Rectangular Finite Element for Plate Bending Analysis Based on Hellinger-Reissner's Variational Principle

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Rectangular Finite Elements for Plate Bending

The paper describes three different rectangular plate bending elements based on Reissner's type stationary variational principles. They differ in the number of dependent variables approximated independently and also in the number of nodes per element. The first element types treats the transverse deflection and the three moments as unknowns at each of the corner nodes; the second element type t...

متن کامل

Mixed Finite Element Models for Plate Bending Analysis

The theoretical background of mixed finite element models, in general for nonlinear problems, is briefly reexamined. In the first part of the paper, several alternative “mixed” formulations for 3-D continua undergoing large elastic deformations under the action of time dependent external loading are outlined and are examined incisively. It is concluded that mixed finite element formulations, wh...

متن کامل

An Efficient Finite Element Formulation Based on Deformation Approach for Bending of Functionally Graded Beams

Finite element formulations based generally on classical beam theories such as Euler-Bernoulli or Timoshenko. Sometimes, these two formulations could be problematic expressed in terms of restrictions of Euler-Bernoulli beam theory, in case of thicker beams due to non-consideration of transverse shear; phenomenon that is known as shear locking characterized the Timoshenko beam theory, in case of...

متن کامل

Superconvergence in Projected-Shear Plate-Bending Finite Element Methods

Projected-shear nite element methods for periodic Reissner-Mindlin plate model are analyzed for rectangular meshes. A projection operator is applied to the shear stress term in the bilinear form. Optimal error estimates in the L 2-norm, H 1-norm, and the energy norm for both displacement and rotations are established and gradient superconvergence along the Gauss lines is justiied in some weak s...

متن کامل

Local Projection-Based Stabilized Mixed Finite Element Methods for Kirchhoff Plate Bending Problems

and Applied Analysis 3 Let {T h } h>0 be a regular family of triangulations ofΩ (cf. [1, 20]); h := max K∈Th h K and h K := diam(K). Let E h be the union of all edges of the triangulation T h and E h the union of all interior edges of the triangulationT h . For any e ∈ E h , denote by h e its length. Based on the triangulationT h , let the finite element spaces be given by Σ h := {τ ∈ Σ : τ| K ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nuclear Science and Technology

سال: 1972

ISSN: 1881-1248,0022-3131

DOI: 10.3327/jnst.9.28